

Verwendung

Einbau hinter Umwälzpumpen in Heizungs- und Warmwasseranlagen, um Schwerkraft-Zirkulation zu vermeiden.

Einsatzgrenzen / Werkstoffe

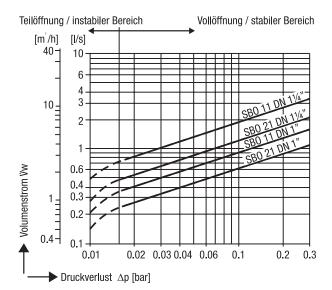
Betriebsdruck	Betriebstemperatur	Werkstoff			
[bar]	[°C]	Gehäuse	Ventilkegel		
6	130¹)	Messing (CW614N)	PP0		

¹⁾ bei drucklosem Ventilkegel

Maße

Тур			SB0 11		SB0 21		SB0 31		
Nennweite	DN		1"	11/4"	1"	11/4"	3/4"	1"	11/4"
	L	[mm]	66	82	57	70	39	40	45
Anschluss-	Eintritt 2	2)	G 11/2	G2	G 1 1/2	G2	0.11/.	0.11/-	0.0
Gewinde	Austritt		G 1	G 1 ¹ / ₄	G 1	G 1 ¹ / ₄	G 1 ¹ / ₄	G 11/2	G 2

²) SBO 11 und SBO 21: Gewinde Überwurfmutter


Öffnungsdrücke

Druckdifferenz bei Volumenstrom Null.

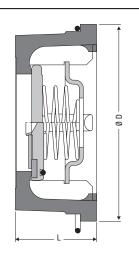
Тур	DN	Öffnungsdrücke [mbar]						
		Durchflussrichtung						
			der V	entile				
		ohne		mit Fede	r			
		Feder						
		↑	↑	\rightarrow	$oxed{igsquare}$			
SB0 11	1"	1	7	6	6			
	11/4"	·		Ů				
SB0 21	1"	1	7	6	5			
000 21	11/4"	ı '	,					
	3/4"							
SB0 31	1"	2	9	7	5			
	11/4"							

Druckverlustdiagramme

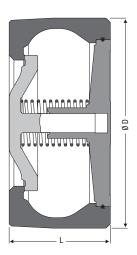
SB0 11, SB0 21

Kurve 1: SBO 21 DN 1" Kurve 2: SBO 11 DN 1" Kurve 3: SBO 21 DN 11/4" Kurve 4: SBO 11 DN 11/4"

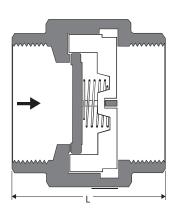
SB0 31



Kurve 1: SBO 31 DN $^{3}/_{4}$ "


Kurve 2: SBO 31 DN 1"

Kurve 3: SBO 31 DN 11/4"



RK 70 (unterer Teil) / RK 71 (oberer Teil) DN 15 bis 100

RK 70 DN 125 bis 200

MB 14

Verwendung

Тур	PN	
RK 70	6	Für Flüssigkeiten, besonders geeignet für Heizungs- und Warmwasseranlagen. Einsatz als Schwerkraftumlaufsperre, Rücklaufsperre.
RK 71 MB 14	16 16	Für Flüssigkeiten, Gase, Dämpfe. Einsatz als Schwerkraftumlaufsperre, Vakuumbrecher, Belüfter, Ansaugfußventil, Überdrucksicherung oder Überströmventil

Werkstoffe

Тур		DN	EN	ASTM1)	
RK 70	Gehäuse	15 – 100	Messing (CW617N)	Messing	
	Ventilplatte		Kunststoff PPE	_	
Gehäuse		125 – 200	Grauguss (EN-JL 1040)	A126 Class A	
	Kegel		Kunststoff Polyamid 6	_	
RK 71	Gehäuse	15 – 100	Messing (CW617N)	Messing	
	Ventilplatte		1.4571	AISI 316 Ti	
MB 14	Gehäuse	15 – 50	Messing (CW614N)	Messing	
	Ventilplatte		1.4571	AISI 316 Ti	

¹⁾ ASTM-Werkstoff vergleichbar mit dem EN-Werkstoff!
Unterschiede der chemischen und physikalischen Eigenschaften beachten!

Maße

	DN	[mm]	15	20	25	32	40	50	65	80	100	125	150	200
		[ZoII]	1/2	3/4	1	11/4	11/2	2	21/2	3	4	5	6	8
	L	[mm]	16	19	22	28	31,5	40	46	50	60	90	106	140
RK 70	D	[mm]	40	47	56	72	82	95	115	132	152	184	209	264
RK 71	D	[mm]	40	47	56	72	82	95	115	132	152	_	-	_
	L	[mm]	49	49	61	61	72	72	_	_	_	-	-	_
MB 14	D	[mm]	42	42	62	62	83	83	-	-	-	-	-	_
	SW	[mm]	30	30	46	46	65	65	_	-	-	_	-	_

Einsatzgrenzen

Тур	Nenndruck	Nennweiten	PM	A / TMA / [bar] / [°C]		
RK 70	6	15 – 100	6 / -30	1,5 / 100	0,5 / 130	
	6	125 – 200	6 / -10	1,5 / 100	0,5 / 130	
RK 71	16	15 – 100	16 / -60	14 / 200	13 / 250	
MB 14	16	G 1/2 — G 2	16 / -60	14 / 200	13 / 250	

RK-Ausführungen

Тур		Sitzdic	htung		S				
	metallisch	EPDM	FPM	PTFE	ohne Feder	Sonder- federn	Nimonic- feder	Erdungs- anschluss	
RK 70	(Kunststoff)	_	-	-	-	-	-	RK 86	
RK 71	Х	RK 41 ve	erwenden	RK 86 verwenden	RK 41 verwenden		-	verwenden	
MB 14	Х	-	-	-	-	-	-	-	

X : Standard
- : nicht möglich

Öffnungsdrücke

Druckdifferenz bei Volumenstrom Null.

RK 71*)

DN	Öffnungsdrücke [mbar]						
	Durchflussrichtung der Ventile						
	ohne Feder	mit Feder					
	1	1	\rightarrow	1			
15	2,5	10	7,5	5			
20	2,5	10	7,5	5			
25	2,5	10	7,5	5			
32	3,5	12	8,5	5			
40	4,0	13	9	5			
50	4,5	14	9,5	5			
65	5,0	15	10	5			
80	5,5	16	10,5	5			
100	6,5	18	11,5	5			

RK 70*)

DN	Öffnungsdrücke [mbar]							
	Durchflussrichtung der Ventile							
	ohne Feder		mit Feder I					
	↑	↑	\rightarrow	\downarrow				
15	0,4	7,8	7,4	7				
20	0,4	7,8	7,4	7				
25	0,4	7,8	7,4	7				
32	0,5	9	8,5	8				
40	0,5	9,5	9	8,5				
50	0,6	9,7	9,1	8,5				
65	0,7	10,4	9,7	9				
80	0,8	11,6	10,8	10				
100	0,9	12,3	11,4	10,5				
125	2,0	9,0	7,0	5,0				
150	2,5	10,0	7,5	5,0				
200	2,5	10,0	7,5	5,0				

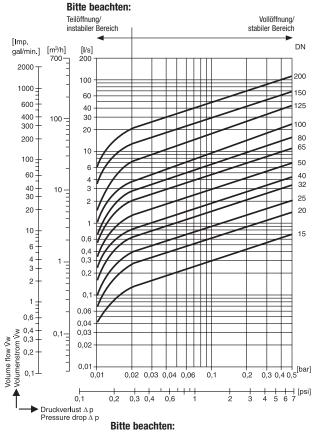
^{*)} RK 70, 71 sind nicht mit Sonderfeder bzw. ohne Feder lieferbar

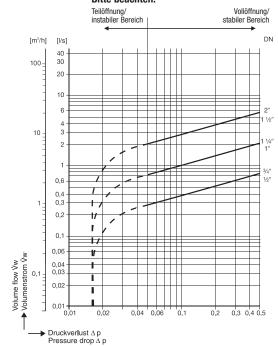
Druckverlustdiagramm

Werte für Wasser bei 20 °C. Zum Ablesen der Druckverluste bei anderen Medien ist der äquivalente Wasservolumenstrom zu berechnen.

Diagrammwerte basieren auf Messungen an Ventilen mit Feder bei waagerechtem Einbau. Bei senkrechtem Einbau ergeben sich nur im Bereich der Teilöffnung unbedeutende Abweichungen.

$$\dot{V}_W = \dot{V} \cdot \sqrt{\frac{\rho}{1000}}$$


 $\dot{V}_W = \ddot{a}$ quivalenter Wasservolumenstrom in [l/s] oder [m³/h]


 ρ = Dichte des Mediums (Betriebszustand) in [kg/m³]

. V = Volumenstrom des Mediums (Betriebszustand) in [l/s] oder [m³/h]

RK 70, RK 71

MB 14

